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Unsteady flow in a branch 

By V. O’BRIEN, L. W. EHRLICH A N D  M. H. FRIEDMAN 
Applied Physics Laboratory, The Johns Hopkins University, 

Laurel, Maryland 20810 

(Received 6 March 1975) 

This study was motivated by the focal tendency of atherosclerotic plaque to 
appear near arterial junctions. A two-dimensional bifurcation was selected to 
provide preliminary info1 mation on branch flow dynamics. Superseding previous 
steady flow estimates in similar branches, digital solutions for two flux waves 
have been obtained to reveal temporal and spatial distributions of shear and 
separation in pulsatile flow. Marked differences from steady flow are illustrated 
as well as variation due to flux-wave shape. 

1. Introduction 
Branching flows occur in many situations and this particular theoretical 

study of unsteady flow in a symmetric branch was motivated by medical research 
into arteriosclerosis. It is now generally recognized that there are three factors in 
the problem of developing atherosclerosis in man’s large elastic arteries : (i) the 
vessel wall, especially injury to the endothelium, (ii) the blood, including the lipids 
within the plasma, and (iii) the hydrodynamics of the blood flow (Mustard et uk. 
1964; Constantinides 1965; Texon, Imparato & Helpern 1965; Fry 1968; 
Haust 1971). Lacking a clear demonstration of all relevant physical and biological 
parameters, it is difficult to decide which of the factors is most important, for 
they are probably mutually coupled. However, the ‘focal’ tendency of the early 
plaque to be found near arterial branches, such as the aortic bifurcation (figure 
l u ) ,  suggests a major role for haemodynamics in the localization (Downie, 
Mustard & Rowsell 1963; Geissinger, Mustard & Rowsell 1962; Murphy et al. 
1962; Texon, Imparato & Lord 1960; Caro, Fitz-Gerald & Schroter 1969; 
Middleman 1972). Because the problem of predicting and verifying haemody- 
namic flow in arterial branches is one of considerable difficulty, a simple, rather 
idealized branching model was selected for preliminary investigation of unsteady 
flow dynamics by appropriate numerical techniques. 

The simulation of pulsatile incompressible flow within the rigid impermeable 
two-dimensional model of a symmetric bifurcation shown in figure I (b)  ( *  1.e. a 
crude analogue of the junction of the abdominal aorta and the iliac arteries; 
see figure I (a) )  reveals unsuspected details of the space- and time-dependent 
distribution of flow properties near the corner G and the divider tip D. The flow 
picture differs from previous steady channel branch calculations (Lynn, Fox & 
Ross 1973; Cheng & Fijas 1972) or impulsive flow (Hung & Naff 1969). None of 
these publications were validated but the physical accuracy of our simulation 
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FIGURE 1. Aortic bifurcation model. (a )  Anatomy of abdominal aorta; 
aortic bifurcation circled. (6) Two-dimensional model (symmetric). 

model has been checked against experimental measurements by laser veloci- 
metry in a water channel (Bargeron, Mark & Friedman 1975). 

This report provides insight into important time-dependent aspects of a 
branch flow. It is obvious that one will not be able to understand fully haemo- 
dynamics or its quantitative effect on atherogenesis near branch junctions with- 
out allowing for the unsteadiness of the flow field (see Friedman, O'Brien & 
Ehrlich 1975). Numerical questions peripherally related to the physics are 
considered separately in the appendix. Only samples of our results with the fully 
developed input flow will be given, although others have been used and the 
system can use any measured inflow. Deficiencies of the simple model for arterial 
branches are pointed out in the discussion section ($6) .  However, a focal tendency 
to have the major differences from inflow and outflow located close within the 
junction is clearly indicated. Advantages of the numerical method and extension 
towards more realistic blood flow models are also discussed. The results could 
have application to other branch flows, e.g. corrosion in branching pipes during 
chemical processing. 

2. Setting the problem 
It will be assumed that the flowing fluid can be modelled as a Newtonian 

viscous fluid. In  principle, every incompressible viscous flow can be determined 
from the govexning continuity and momentum equations with physically 
reasonable boundary conditions. Unfortunately, the momentum equation is 
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FIGURE 2. One-dimensional pulsatile flow in straight rigid conduits. (a) Anatomy 
(after Spencer & Denison 1963). (6) Theoretical parallel flow: 7, is wall stress. 

nonlinear and analytically intractable except for special cases. One special class 
is parallel flow in straight conduits of constant cross-section. Estimates of wall 
shear for levels of the arterial tree (figure 2 )  have been made by Whitmore (1968) 
using the steady flow cylindrical model, where it is predicted that the mean 
wall shearing rate increases monotonically to a maximum in the capillaries. 

If only long straight conduits were involved the theoretical inclusion of 
fluctuations along with the steady parallel flow component could be achieved 
analytically, or it could be calculated numerically; see Clark & Robertson (1971). 
Parallel viscous flow solutions for sinusoidal flux, including a wall shearing stress 
T,(N),  are known theoretically: for round tubes see Grace (1928) and Sex1 (1930); 
for elliptic cylinders see Khamrui (1957); for plane channels see Rott (1964); and 
for rectangular ducts see O’Brien (1975). Many details have been confirmed 
experimentally. The wall stress depends on a ‘Stokes number ’ N = (7rP/vT)* 
for any given flux oscilIation amplitude where T is the period, Y is the fluid 
kinematic viscosity and t is a characteristic length. By linear superposition, a 
steady Poiseuille flow and a sinusoidal fluctuation may be added for all Reynolds 
numbers Re; fluctuations of other frequencies sum as readily. The peak shearing 
stress can considerably exceed the mean in these fully developed flows, rising 
with N (see figure 2 ( b ) ) .  

Without the simplification of parallel flow, nonlinearity comes into play, 
so that numerical approximate solutions are more practical. A full three- 
dimensional time-dependent branch problem with any reasonable space resolu- 
tion would tax the limits of our computer capacity and calculation budget. 
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FIGURE 3. Simple pulsatile flow through a branch. (a) Simple pulsatile flow (definition) : 
Y is normalized flux per unit depth, Re is instantaneous Reynolds number. ( b )  Time- 
dependent inlet wall stress for pulsatile flow. N = (T/V!P)&~L = 10. 

Instead, an ideal rigid two-dimensional simulation of the branch geometry was 
used in the interest of economy, with the knowledge that the result must be 
carefully interpreted as a partial picture of the flow situation in the three- 
dimensional orthogonal symmetry plane defined by the geometry of the branch. 

First, for convenience, we consider ‘a simple pulsatile flow’; see figure 3(a ) .  
This is the sum of a steady flux and a single harmonic flux of equal magnitude. 
The corresponding instantaneous input channel Reynolds number Re used in 
the calculation is also shown. The Reynolds number governs the influence of the 
(nonlinear) convective term relative to the viscous diffusion term in the Navier- 
Stokes equation. It reaches a peak .& of 400 (based on the total input channel 
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width 2L), where f i e  = Re(N)  + Re(S) = 2Re(S) .  The steady Reynolds number 
Re(S) and fluctuation Reynolds number Re(N) are defined for the two- 
dimensional flow as 

Re@) 5 ( Us)2Lpp-l (steady), 

Re(N)  3 I( UN)12Lpp-l (fluctuating), 

where ( U )  is the space-mean or average velocity across the input channel and 
the dimensional quantities p, p and Y are the conventional ones. The channel 
‘Stokes number’ N E (2L2w/u) i ,  where w = T/2r is the angular frequency of 
pulsation. In  the figure Y is the flux per unit depth normalized with respect to 
2L( Us>. The flux is non-negative throughout the cycle. 

The parallel channel input is assumed to be fully developed flow, whose 
analytic solution as il function of N is known (Rott 1964) and has been verified 
(O’Brien & Logan 1966). The pulsatile input flow has maximum and minimum 
limits of total wall shear T,(X) & T,(N), conveniently normalized by the mean 
(i.e. steady) parallel wall shear to remove the dimensionality (figure 3 ( b ) ) .  There 
is a phase shift $ ( N ) .  Note that, because ~T,(N)I > T,(X) for all N > 0, there is 
a time interval of negative shear, which corresponds to periodic flow reversal 
along the udl  even though the net flux is never negative (figure 3a). The negative 
wall shear occupies a greater portion of the cycle as N --f 03. 

When more complicated flux waves pass through the Y branch the flow cannot 
be obtained by Fourier synthesis; owing to nonlinearity every flux wave is an 
individual problem. A realistic arterial flux-wave shape, obtained in vivo, has 
also been used for a pulsatile branch flow calculation. 

3. Theoretical method 
The coupled equations for the stream function Y(X, Y,t’) (normalized flux 

per unit depth) and vorticity Q(S, Y, t’) (magnitude of the curl of the normalized 
velocity vector) are 

[Y, Q1- - Y 1’ Q,] = V2Q) 
N 2  i3Q Re(S) ---- 
2 at’ 2 

V2Y = -Q, ( 2 )  

where X = x /L ,  Y = y / L  and t’ = wt = 27rtT-l, where T is the period of fluctua- 
tion. Advantage has been taken of the assumed symmetry of flow within the 
symmetrical branch (figure 4). The velocity components are normalized by (U,): 

U’ z U/(U,) = aYpY, V’ = Vl( Us> = -aY/aX. 

No slip is allowed along the horizontal and sloping impermeable walls (figure 
4) so “(1) is a function of t’ only and aY(l)/an = 0 (n  is the outward normal 
direction). On the plane of symmetry (2’ = 0), Q(S, 0, t’) = Y(S, 0,  t ’ )  = 0. 
At the inlet the simple pulsatile Y( Y ,  t ’ )  and Q( Y ,  t’) are known from the analytic 
solutions. At the outlet the &st derivatives of Y and Q along the p (parallel 
to daughter wall) direction vanish (flow parallel to walls). 

The angle of the bifurcation is 90”. The ratio of the areas of the daughter and 
inlet channels is a = 0.8. Note that the boundary conditions on the walls are 
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FIGURE 4. Non-dimensional equations and boundary conditions for the calculation. 

stated in terms of Y (figure 4). Boundary conditions on Q are needed to solve (1). 
Applying the fact that the derivatives of Y tangential to the boundary vanish, 
!3 = -Y?,, on a solid boundary, where rt. is a well-defined normal on all the 
straight sections of the walls. No normal exists for a mathematically sharp 
corner at C, but all physically smooth corners have a normal everywhere. So an 
approximation to the local normal a t  C was obtained by averaging the normals 
on the two walls approaching the corner. On the basis of previous experience 
with coupledY, f2 equations(Ehr1ich 1971 a, b, 1973a, b ) ,  a two-point second-order 
[O(h2)] approximation to Y,, was used, where h is the spacing of the finite- 
difference mesh. See Ehrlich (1974) for details. The nonlinear equation (1) was 
solved on an IBM 360/91 by explicit marching. There were restrictions on the 
time step for stability. Numerical analysts may be interested in the discussion of 
accuracy given in the appendix. 

The Poisson equation (2) is linear and could be solved iteratively. However, 
the method of Hockney (1 965), incorporating modifications suggested by George 
(1970) and Buzbee et al. (1971) for non-rectangular regions, allowed efficient 
direct solution at every time step once Q ( X ,  Y )  had been evaluated. Other 
parallel entrance velocity conditions were also used, including steady flow alone. 
The branch area ratio a was also varied (see Friedman et al.). 

4. Results of numerical experiments 
Ximple pulsatile flow 

Once the program successfully generates the nonlinear solution (as a function 
of x, y, t )  all information regarding flow dynamics is available. This includes 
velocity components, wall shear, vorticity, instantaneous streamlines, pressure 
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FIGURE 5 .  CaIculated relative wall stress at a point P (X = 1-875) just before the 
corner C (Be  = 400, N = 10, c( = 0.8). 

gradients, etc. The difficulty arises in deciding which of these quantities is most 
meaningful for appreciating the branch flow (or understandug its relationship to 
arteriosclerosis etiology). For example, the calculated periodic variation of wall 
shearing stress a t  a single point P just before the corner of the branch is shown 
in figure 5 ,  normalized by the mean inlet wall shear TW(I). Note that the mean 
stress 5, at this location exceeds both the inlet and outlet mean values. Therefore 
it is doubtful that the mean shear in the human arterial tree increases monotoni- 
cally to a maximum in the capillaries (Whitmore). 

Flow velocity components display the gross time variation of the simple 
pulsatile flow field. The appropriate numerical derivatives of Y ( X ,  Y ,  t ' )  are fed 
into an IBM 2250 graphics display processor and instantaneous velocity vectors 
are presented on the oscillograph output as directed lines from the mesh points. 
Figures 6 (a)-(d) show the vector field at  intervals during the cycle. The horizontal 
line just above the horizontal wall represents the total flux per unit depth through 
the branch (and average absolute velocity) at  that instant of time. Another 
horizontal line in the upper left gives the relative magnification of all velocity 
vectors. The magnification varies from figure to figure because the velocity 
magnitudes vary coiisiderably through the cycle (recall that Be = 2 Re(#) and 
min Re = 0). To reduce them to a common scale, divide the velocity vectors by the 
relative magnification length. At the time of zero flux (t' = 7 ~ )  there is consider- 
able backflow near the outer walls of the daughter channel. By the time t' = in 

21 FLM 75 
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FIGURES 6 (a, b ) .  For legend see facing page. 

(instantaneous flux = mean flux), all flow is forward but the pattern is somewhat 
different from that when t’ = (when again instantaneous flux = mean flux). 
Near t’ = 0 or 277 (maximum flux) there are indications of separation from the 
back of the corner. However, this separation region does not extend very far into 
the daughter channel, as revealed by close inspection of the stream-function field. 
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Because separation and reverse flow are features of the unsteady branch flow, 
the display of the approximate location of vorticity zeros,? which mark the 
instantaneous separation and reattachment points on the walls, should be of 

t The flow separates or reattaches somewhere close to the indicated curves, but inter- 
polation for a ‘more precise’ location was not warranted for the coarse mesh (see appendix). 

21-2 
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FIGURE 7. Approximate location of separation and reattachment points in the branch 
during the pulsatile flow cycle. (a) Outer wall. (b )  Inner wall. 0, separation; 0 ,  re- 
attachment. 

interest (figure 7). During a portion of the cycle there is reverse flow at the walls 
all along the outer boundary and most of the divider. Only the divider tip does 
not experience flow reversal. During another portion of the cycle, the flow 
reattaches to the parent channel walls as it approaches the daughter channels. 
During yet another part of the cycle, around peak flux time, there is separation 
and reattachment just beyond the corner ( X  = 2 )  on the outer wall. The size 
and duration of this closed circulation region are very sensitive to the mesh size 
used in the calculation and the corner vorticity boundary approximation. Using 
the approximation most appropriate to a smooth physical boundary gave the 
most consistent results as h-+ 0, but the size of the corner circulation region (in 
space and time) became smaller when h was halved from Q to &. The other loci 
of reattachment and separation were. essentially the Fame at h = & and h = & 
(see Friedman et d.). No separation was found for the steady flow, Re(&') = 200. 

The separation phenomenon in the bifurcation differs from that in a diverging 
channel without flow splitting (Schneck & Ostrach 1973). The effect ofthe divider 
is to minimize or prevent transient detachment on the outer wall, as shown in 
complementary calculations by decreasing the area ratio a from a large value to 
the one shown here. 

In  arterial haemodyiamics the wall shearing stress is an important dimensional 
quantity (see Fry 1968), and is directly proportional to the non-dimensional wall 
vorticity CltO: T,(X, Y ,  t ' )  = [ S , U ~ R ~ ( ~ ) / , O ( ~ L ) ~ ]  i2,(X, Y ,  t'). The distribution of 
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FIGURE 8. Relative wall stress 7,/[7,(1)] within the branch at four instants during the 
pulsatile flow cycle (and S = steady flow). (a) t' = 477 (mean flux). (a) t' = 77 (minimum). 
( c )  t' + $n (mean). (d) t' = 277 (peak). 

ft, (or T~,.) along the upper bounding walls is shown at four times during the 
periodic cycle in figure 8.t At t' = (curve (a):  instantaneous flux = mean flux)? 
the outer wall vorticity 0, rises from its upstream negative value to a high posi- 
tive value just before the corner, and then falls towards the lower positive 
downstream daughter channel value. At t' = 7~ (curve ( b ) :  zero flux), 0, is 
everywhere negative but small. At t' = $ 7 ~  (curve (c): instantaneous flux = mean 
flux again), QtU rises from a moderate positive value to a much higher value just 
before the corner, and then with a single oscillation settles down to the down- 
stream channel value. At the end of the cycle, t' = 2n (curve (d ) :  peak flux), the 
wall vorticity (and hence also 7,) rises to a very high value near the corner C. 
It falls to a negative value just behind the corner (the recirculation region). 
Then it gradually approaches the downstream channel value. The corresponding 
steady stress distribution is abo shown. The instantaneous peak wall vorticity, 
or fl,, is many ti%es the input peak !&,(I), which is in turn higher than the mean 
upstream value Q,(s). The values plotted are not necessarily quantitatively 
significant (owing to numerical approximation) but their trend should be. 

The distribution of vorticity and stress is also shown for the divider or inner 

t The vorticity has opposite sign on the symmetrical wall in the lower half of the Y. 
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FIGURE 9. Comparison of mean relative stress ( M )  and mean magnitude relatire stress 
(,JIM) distributions with the steady relative stress distribution (8). 

8 Tw(8)/7,(f). 

wall. There is a sharp initial rise in magnitude and slower decay to the down- 
stream parallel value. The extrema of Qw, both peaks and minima, vary along 
the walls, and their phase relative to the input flux also varies. The mean (time- 
average) wall vorticity varies with downstream distance and thus the mean wall 
shearing stress does not equal the steady shearing stress near the junction owing 
to the nonlinearity of the flow. Since the force on the wall is just as strong for 
reverse shear as for forward flow, the mean magnitude of rw or is perhaps a 
better indication of the flow-induced wear and tear on wall surfaces. Comparisons 
with the steady relative stress distribution are shown in figure 9. 

Qualitatively quite similar results were obtained for other simple pulsatile 
flow calculations. The peak values of the shear and its minima vary, the magni- 
tudes increasing with Re(& increasing, N increasing or a decreasing. The loca- 
tions of these extrema do not migrate. 

In vivo jiux wave 

The shape of a realistic arterial flux wave was obtained from a catheter probe in 
the iliac artery of a young boy during the course of an operation; see figure 10 
(thanks to Dr L. J. Krovetz, Johns Hopkins Hospital). It was not possible t o  
quantify the flux a t  the same time, but for comparison purposes it was assumed 
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FIGURE 10. Time dependence of human abdominal aortic flux wave; simple 
pulsatile wave also shown. 

that the peak flux was equal to that in the previous simple pulsatile flow example, 
namely Be = 400 (figure 10). (Quite similar flux waves had been recorded near 
the abdominal aortic branches in dogs by previous researchers; see Gutstein, 
Farrell & Schneck 1970.) One immediate difference between the real flux wave 
and the simple pulsatile one is the peak-to-mean ratio R. For the simpler wave 
it was fixed a t  2, but the real wave has R = 5.  (In animals and humans this ratio 
is often in the range 3-6.) The simpler wave had a minimum of zero, but the real 
wave indicates negative net flow during a fraction of the cycle immediately 
following the peak pulse (and also some small high frequency oscillations about 
zero). The phase difference between the two waves is arbitlary, of course; the 
indicated time of the in vivo wave is relative to the R-wave of the heart. The 
Stokes number N was assigned the same value as in the previous example. 

The fully developed velocity profiles as a function of time required for the input 
to the numerical program were obtained by a finite-difference solution of the 
parallel (one-dimensional) flow equation with the flux wave a d  a boundary con- 
dition. This direct solution is quicker and easier than doing a (numerical) Fourier 
a,nalysis in terms of the basic period and then combining the harmonic analytic 
solutions. The other boundary conditions for the full two-dimensional calculation 
in the bifurcation remain the same (figure 4). 

Although the simple pulsatile flux wave and the in vivo one were assigned the 
same ba,sic similarity parameters, peak Reynolds number & and Stokes number. 
N ,  the variation in flux-wave shape obviously creates differences between the 
respective unsteady branch flows. The quart,er-cycle vorticity (wall stress) 
distributions of the simple wave (figure 8) occurred at peak, mean (2) and mini- 
mum flux. The corresponding stress distributions a t  the instants of peak (d) ,  
mean ( 2 )  (a  and c)  and minimum flux ( b )  for the in vivo wave are shown in figure 11. 
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FIGURE 11. Wall vorticity distributions at four instants for in vivo flux wave. (a) Mean flux. 
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FIGURE 12. Wall vorticity distribution for the in  vivo wave a t  peak flus. 
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FIGURE 13. Wall vorticity extrema for the in wiwo wave (compared with mean am). 
(a) Outer wall. (b) Divider wall. 

Of course, only a t  the instant of peak flux is the net flow through the bifurcation 
the same for the two flows. The SZw distributions a t  & with the wall vorticity 
normalized by the mean inlet values are compared in figure 12. Not surprisingly, 
for the higher R wave the parallel inlet (and also outlet) flow has greater vorticity, 
but the ratio is higher than 5:2. This appears to be due to the relatively steep 
rise of the in vivo flux wave to its peak, compared with the simple harmonic one. 
As with the simpler wave there is a sharp rise in vorticity at  the outer corner of 
the bifurcation, followed by a drop to a negative value just past the corner. 
The magnitudes of the extrema are greater at larger R. The magnitude of the 
vorticity distribution near the divider tip is also greater for the larger R. However, 
the curves are qualitatively similar, indicating that the major changes from the 
parallel inlet and outlet values lie close within the junction. (The wiggles on the 
divider-tip distributions may be due to the inadequacy of the fixed mesh calcu- 
lation to represent accurately the highest harmonics of the flux wave; see 
appendix.) Extremum values of SZ,, are compared with the mean values in 
figure 13. 
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FIGURE 14. I n  wiwo separation-reattachment pattern (with simple pulsatile one). (a) Outer 
wall. (b)  Divider wall. iitwmw, reattachment; __ , separation, B, closed circulation. 

The instantaneous velocity vector patterns for the in vivo wave are qualita- 
tively similar to the simple harmonic case at peak and mean flux. At the time of 
greatest negative flux (minimum flow) all the velocity vectors are directed 
upstream. 

It was expected that the approximately 20 yo of the cycle with negative flux, 
and the more intense flow reversal behind the outer corner, would imply great 
differences in the separation patterns throughout the cycle. Actually, if the phases 
of the two flux waves are adjusted such that the times of inlet wall flow reversal 
coincide, as in figure 14, where the simple pulsatile flow results are dashed, the 
time-distance variation of the zeros of the vorticity (which mark detachment or 
reattachment of instantaneous streamlines to  the wall) is not very different. The 
recirculation bubble a t  the outer corner is longer in length and duration, but only 
slightly. The separation point on the divider moves forward, right to the tip, 
moving off as the flux becomes negative. The reattachment to the outer wall after 
total flow reversal (in vivo) is only slightly different from the wall reversal alone 
(simple pulsatile). 

In  summary, the distributions of wall vorticity with the in vivo wave are rather 
similar in shape to the simple pulsatile ones regarding the locations of extrema 
on the outer wall and the divider tip. Only the magnitudes of the vorticity 
extrema change, increasing with R. The separation patterns on the outer wall are 
similar; the difference on the divider tip is due to the portion of the cycle having 
reverse flux. 
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5. Discussion 
The solutions presented here have given an indication of the complexity of 

unsteady branching flow. Yet they are far from complete as a total picture of 
pulsing blood flow. Some of the ways in which they are unrealistic are listed 
below, so that it is clear that the application to arterial haemodynamics is 
qualitative. However, the potentialities of the numerical technique to predict 
more closely the actual flow patterns theoreticalIy are also pointed out. 

Disadvanta,ges of present model as an arterial one 

A major drawback is a topological one: all real branches are three-dimensional. 
Our two-dimensional model cannot predict the secondary flows which have been 
observed in branch flows, steady and unsteady (Zeller, Talukder & Lorenz 
1970; Brech & Bellhouse 1973). However, if the three-dimensional geometry 
has another orthogonal plane of symmetry the secondary flow helices go in 
opposite directions relative to this plane, which means that there is no secondary 
flow contribution to the wall shear along the plane’s intersection with the wall. 
So there the wall shear distribution will depend on &e, R and N as in the present 
examples (neglecting minor variations in flux-wave shape). This has been borne 
out by experimental measurements in a rectangular duct branch (Bargeron 
et al. 1975). 

Real arterial geometries are not of uniform cross-section, nor are corners sharp. 
The angles of bifurcation vary. Also, arterial junction geometries are not fixed 
because the elastic walls yield to the unsteady pressure pulses of the flowing 
blood. In  addition, blood is not really a Newtonian fluid, but a viscoelastic 
suspension of erythrocytes and other elements. 

Advantages of numerical theory 

As demonstrated within the present bifurcation geometry, it is easy to vary the 
important dynamic parameters? to assess the dependence of unsteady flow 
patterns on them. Given the inflow flux, all features of the pulsatile branch flow 
can be predicted including wall shear and separation patterns. (Perhaps it will 
be possible to find a correlation between flux-wave shapes and local progress of 
atherosclerosis.) The velocity fields can be used to calculate the convective terms 
in mass-transport analyses, which are necessary to describe the coupling between 
the biochemistry and haemodynamics (Car0 et al. 1969, 1971). 

Similar two-dimensional calculations in rigid branches with non-uniform 
cross-sections with rounded walls and/or other angles can be performed by means 
of ‘ short-leg ’ finite-difference approximations a t  the boundaries. 

The inclusion of moving boundaries in three dimensions and modelling blood’s 
viscoelastic properties are computational predictive tasks still far in the future. 
It will be difficult and expensive to do numerically (but nothing else is feasible). 
The methods to be developed will almost certainly depend upon the availability 

t At least up to& = 400, N = 10. 
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of measurements of the pertinent physical properties and the desired accuracy 
of haemodynamic theoretical predictions. 

6. Conclusions 
The detailed dynamics of plane pulsatile flows in a two-dimensional bifurcation 

have been presented. The numerical method is applicable to a wide range of the 
dynamic parameters, Be and N ,  and flux-wave shape, as well as other two- 
dimensional geometries. The results show the inability of a steady two- 
dimensional flow calculation to predict quantitatively even the mean fox ces 
developed by such a nonlinear time-dependent flow; they depend upon the shape 
and magnitude of the flux wave. The unsteady maximum forces are much larger 
than the mean ones; they depend upon flux-wave shape also. 

The numerical calculations definitely indicate local flow differences close within 
the junction. For both flux waves there are high shearing forces (transient, peak 
and mean) in the branch. They tend t o  be localized near the outer wall corner 
and near the divider tip as in steady flow simulations but exceed the steady 
values. Unlike steady flow a t  the same mean Reynolds number, there is also a 
transient separation bubble just inside the branch on the outer wall. Judging 
from the bifurcation of an unbounded uniform flow (Kaplan 1966), one could 
anticipate quantitative lowering of the maximum shearing stress with corner 
rounding, but the trend of peak ratios and locations probably remains essentially 
the same. The maxima increase with Re(&’), R and N increasing (and also with a 
decreasing, i.e. smaller branches). There is no doubt that complex branching 
pulsatile flow patterns affect the convective transport of biologically important 
substances. 

Appendix. Accuracy of numerical nonlinear analysis 
The feat of obtaining a numerical nonlinear flow simulation is always tempered 

by a lack of knowledge of the accuracy of the approximation. Until this section 
is superseded by complete objective experimental comparison, a discussion is 
presented to place the present calculations in perspective. 

First, the form of the vorticity transport equation (1) differs from another 
popular one (e.g. Roache 1972, equation 2-12) in two respects. Usually 

aQ/at’ = - V . (U’Q) + Re-1V2Q; 

at high Reynolds numbers in steady flows with slight unsteady perturbations, 
the nonlinear convection dominates the viscous diffusion and L/( Us> is taken 
as the characteristic time. Roache also uses the so-called ‘conservative form’ 
of the convective term, but for incompressible flow the term can be reduced 
analytically to the form given in (1) .  It is sometimes claimed that the use of 
corresponding finite-difference forms of the two convective expressions leads to 
two different solutions of steady-state problems solved by numerically relaxing 
an initial transient (e.g. Torrance & Rockett 1969). Close inspection often reveals 
differences in setting up the problem other than just the convective term. The 
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stability of an explicit marching scheme obviously can be affected by the form 
of the convective term, but that question is clouded by the apparent stability 
variation due to changes in the SZ boundary-value approximation (see Lugt & 
Rimon 1970; Roache 1972). At any rate, the solutions discussed here were stable 
for the time steps used in the marching technique. 

On the other hand, as in our calculations, Pearson (1965) used a non- 
conservative nonlinear term and second-order vorticity boundary approximation 
for numerical calculation of Y and SZ in a known exact time-dependent (decay) 
problem. The comparison of the numerical result with the exact analytic solution 
(his table 2) was quite reasonable. The actual numerical accuracy will be related 
to the mesh size h and the convergence criterion for the relaxa,tion iteration. 

Our convergence criterion, a residual e of order lom6, was applied a t  a point 
at two times separated by 2n. After the solution had converged, a final cycle 
checked the absolute relative errors per cycle of Y, a, and Yv at each mesh 
point. In  general these were of order occur- 
ring only near the points where the variable changed sign. 

As the size of a finite-difference mesh decreases, the finite-difference approxi- 
mation theoretically approaches the solution of the continuum governing equa- 
tions. The difference is sometimes called ‘truncation convergence ’ to distinguish 
it from the iteration convergence above. For oscillatory flow there is a natura,l 
‘viscous length’, O(v/w)*, so that adequate representation of the unsteady flow 
requires h < JZ/iV. There were irregularities in the large (g) mesh field solution, 
which were iioned out when the mesh was reduced to & for the wall vorticity 
approximation described above (including the corner one). 

The mathematical ‘dilemma’ of flow singularities near a sharp convex corner 
has received considerable attention in the literature of elliptic and quasi-elliptic 
equations (Fox 1971; WaIsh 1971; Birkhoff 1972). A mathematically sharp 
corner is physically unrealistic for any continuum flow. The corner here is 
regarded as smoothed off symmetrically to a small radius of curvature (< h).  
Then the corner normal is effectively along the bisector and the present numerical 
approximation of vorticity is appropriate and convenient. 

Surprisingly, varying just the convex-corner vorticity approximation had a 
relatively large effect on the local flow solution. The time-dependent separation 
region was quite different for large and small meshes with a number of other 
popular vorticity approximations at  the corner. This finding for the unsteady 
flow is rather eimilar to others’ experience with convex corners in steady viscous 
flow fields (Stevenson 1972; Lugt & Haussling 1972; Underwood & Mueller 
1972). The second-order average normal has been shown to be more consistent 
with analytical theoretical expectations for steady Stokes flow (Re --f 0) and the 
numerical solutions showed less variability as the mesh size decreased (it+ 0). 
Separation from a point close to the corner was involved in these calculations, just 
as sometimes occurs here in the pulsatile flow solutions in the branch. Very fine 
mesh solutions are required to present accurately the details of the separation 
phenomenon near corners. (See also Mozayeny 1970.) 

Unsteady numerically calculated separation on a stationary flat wall must pass 
the same stringent ‘regularity test ’ which exists (but is not generally acknow- 

the largest errors, of order 
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ledged) for steady separation accuracy. From the analyses of Dean (1950) and 
Oswatitsch (1958) the three main points of the regularity test for a flat wall are as 
follows. 

(i) The separation (or attachment) streamline and the zero-vorticity contour 
intersect the wall at  the same location. 

(ii) The slopes of the separation streamline and the zero-vorticity contour have 
the same sign a t  the wall. 

(iii) These slopes are in the exact ratio 3 : 1. 
Applying this test to our finer mesh (&) calculated results for separation on the 

flat divider wall (where the separation phenomenon is not confused with the 
corner) reveals the following. 

(i) The interpolated wall intersections of the separation streamline and the 
zero-vorticity contour are a t  nearly the same location (within a mesh length) 
except when the location is changing rapidly with time. 

(ii) Even though the locations may differ, the slopes at the wall do have the 
same sign. 

(iii) For a particular case (zero flux) (figure 15) where the locations do coincide 
(within the error of the calculation) the slopes are approximately in the ratio 3: 1. 

The calculation passes the regularity test qualitatively if not quantitatively. 
It should be noted that nearly all published nonlinear numerical analyses would 
get low grades on this test, but it has seldom been applied. A solitary author 
(Leal 1973) mentions its existence and his steady computation reasonably 
satisfies (i) and (ii) but fails (iii). 

Finally, the outlet flow is forced to be parallel to the daughter walls. The 
numerically computed parallel flow there can be compared with the analytic 
fully developed time-dependent solution. The question of accuracy should 
consider whether the downstream boundary condition has been imposed too 
close to the junction. The asymptotic approach to fully developed parallel flow 
depends upon the Reynolds number in general and a fixed downstream boundary 
will cease to be appropriate a t  some Re for the pulsatile inlet flow. The outlet a t  
X = 4 seems all right for the steady flow alone, Re(8) = 200, because the calcu- 
lated outlet vorticity is linear to a very good approximation. Also the centre-line 
velocity differs less than 1% from the analytic one, a practical criterion often 
used to define ‘fully developed’. However, there are indications, such as small 
asymmetries, that the downstream boundary at 3 = 4 is barely far enough for 
the exit flow to become parallel when Re = 400, even though the mean wall shear 
and mean centre-line velocity are within 1 % of the analytic values. A doubling 
of the inlet and outlet lengths produced the anticipated small changes in the 
calculated values within the junction and showed better agreement with the 
expected developed flow at the outlet location. 
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FIGURE 15. Separation streamline (Y = 0) and zero-vorticity contours (a  = 0) 
for t’ = T or t = 0.52’ (see figures 6 (b) and 8 ( b ) ) .  
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